Building Your First AI Agent
AI agents represent a paradigm shift from static Q&A to dynamic, goal-directed systems. Let's build one from scratch.
What Makes an Agent?
An agent is more than a chatbot. It can:
- Reason about problems step-by-step
- Act by calling external tools
- Observe the results of its actions
- Iterate until the goal is achieved
This is the ReAct (Reasoning + Acting) paradigm.
The Basic Loop
interface AgentAction {
tool: string;
input: Record<string, unknown>;
}
interface AgentStep {
thought: string;
action?: AgentAction;
observation?: string;
}
async function runAgent(goal: string, tools: Tool[]): Promise<string> {
const steps: AgentStep[] = [];
while (true) {
// Generate next thought/action
const response = await llm.complete({
prompt: formatPrompt(goal, steps, tools),
});
const parsed = parseResponse(response);
if (parsed.type === 'final_answer') {
return parsed.answer;
}
// Execute the tool
const observation = await executeTool(
parsed.action.tool,
parsed.action.input
);
steps.push({
thought: parsed.thought,
action: parsed.action,
observation,
});
}
}Tool Definition
Tools are the agent's interface to the world:
interface Tool {
name: string;
description: string;
parameters: JSONSchema;
execute: (input: unknown) => Promise<string>;
}
const searchTool: Tool = {
name: 'web_search',
description: 'Search the web for current information',
parameters: {
type: 'object',
properties: {
query: { type: 'string' }
}
},
execute: async (input) => {
// Implementation
}
};Best Practices
- Clear tool descriptions — The LLM relies on these to choose tools
- Structured outputs — Use JSON mode for reliable parsing
- Error handling — Gracefully handle tool failures
- Context management — Summarize long conversations
In the next post, we'll explore memory systems for agents that learn over time.